COURSE INTRODUCTION

J. Elder

Probability & Bayesian Inference

- The goal of this course is to provide a framework and computational tools for modeling visual inference, motivated by interesting examples from the recent literature.
- Models may be realized as algorithms to solve computer vision problems, or may constitute theories of visual processing in biological systems.
- The foundation of the course is a treatment of visual processing as a problem of statistical estimation and inference, grounded in the ecological statistics of the visual world.

Topics

Probability & Bayesian Inference

- Bayesian decision theory
- Principal components and factor analysis
- Graphical Models
 - Markov Random Fields
 - Conditional Random Fields
 - Belief Propagation
- Clustering
 - Mean Shift
 - **Expectation Maximization**
 - Spectral Methods (Graph Cuts)
- Sampling
 - Gibbs Sampling
 - Markov Chain Monte Carlo
- Classifiers
 - Support Vector Machines
- Neural Networks

Course Format

□ Each week will consist of two 1.5 hour meetings:

- Meeting 1. A lecture by the instructor on a specific computational tool or approach
- Meeting 2. A discussion, led by a specified student, of a selected computational vision paper in which this approach is applied to a specific problem.

Evaluation

- In addition to student presentations of short computational vision papers, two short MATLAB assignments will be collected and graded. The final project will involve application and possibly extension of a technique studied in the class to a problem chosen by the student.
 - Class Participation 10%
 - Paper Presentation 20%
 - Assignment 1 20%
 - Assignment 2 20%
 - Final Project 30%

Main Texts

- C.M. Bishop Pattern Recognition and Machine Learning. New York: Springer, 2006.
- S.J.D. Prince Computer Vision Models. Available in draft form at
 - http://computervisionmodels.blogspot.com/

Probability & Bayesian Inference

Ī	Date	Торіс	Required Readings	Additional Readings	Application Paper
	M Sept 13 W Sept 15	Probability & Bayesian Inference Probability Distributions & Parametric Modeling	Bishop Ch 1.1-1.2.5 (29 pages) Bishop Ch 2.1-2.3 (skip 2.3.5) (43 pages)	Pearl Ch 1.4-1.6, 2 Howson & Urbach 199 Prince Ch 1-4 Duda Ch 3.1-3.5	
-	M Sept 20 W Sept 22	Probability Distributions & Parametric Modeling (cntd.) Non-Parametric Modeling	Bishop Ch 2.5 (7 pages)	Duda Ch 4.1-4.5	Comaniciu & Meer 2002 (Mean Shift)
-	M Sept 27 W Sept 29	Expectation Maximization	Prince Ch 5 (11 pages) Prince Ch 6.1-6.5, 6.8 (24 pages)	Bishop Ch 9	
-	M Oct 4 W Oct 6	Linear Subspace Models	Prince Ch 6.6-6.7, 6.9 (12 pages) Bishop Ch 12 (40 pages)	Duda Ch 10.13-10.14	
-	M Oct 11 W Oct 13	Reading Week			
-	M Oct 18 W Oct 20	Linear Regression	Bishop Ch 3 (36 pages)	Prince Ch 7.1-7.2	
-	M Oct 25 W Oct 27	Linear Classifiers	Bishop Ch 4.1-4.3 (34 pages)	Duda 5.1-5.8	
-	M Nov 1 W Nov 3	Non-Linear Regression & Classification	Bishop Ch 6 (29 pages)	Prince Ch 7.3-7.4	
-	M Nov 8 W Nov 10	Sparse Kernel Machines	Bishop 7.1 (20 pages)		
	M Nov 15 W Nov 17	Graphical Models: Introduction	Bishop Ch 8.1-8.3 (34 pages)		
	M Nov 22 W Nov 24	Graphical Models: Inference	Bishop Ch 8.4 (25 pages)		
-	M Nov 29 W Dec 1	Graphical Models: Applications	Prince Ch 10-11 (56 pages)		
-	M Dec 6 W Dec 8	Sampling Methods	Bishop Ch 11 (32 pages)		

Approximate Schedule

Probability & Bayesian Inference

k Date	Торіс	Required Readings	Additional Readings	Application Paper
M Sept 13 W Sept 15	Probability & Bayesian Inference Probability Distributions & Parametric Modeling	Bishop Ch 1.1-1.2.5 (29 pages) Bishop Ch 2.1-2.3 (skip 2.3.5) (43 pages)	Pearl Ch 1.4-1.6, 2 Howson & Urbach 199 Prince Ch 1-4 Duda Ch 3.1-3.5	
M Sept 20 W Sept 22	Probability Distributions & Parametric Modeling (cntd.) Non-Parametric Modeling	Bishop Ch 2.5 (7 pages)	Duda Ch 4.1-4.5	Comaniciu & Meer 2002 (Mean Shift)
M Sept 27 W Sept 29	Expectation Maximization	Prince Ch 5 (11 pages) Prince Ch 6.1-6.5, 6.8 (24 pages)	Bishop Ch 9	
M Oct 4 W Oct 6	Linear Subspace Models	Prince Ch 6.6-6.7, 6.9 (12 pages) Bishop Ch 12 (40 pages)	Duda Ch 10.13-10.14	
M Oct 11 W Oct 13	Reading Week			
M Oct 18 W Oct 20	Linear Regression	Bishop Ch 3 (36 pages)	Prince Ch 7.1-7.2	
M Oct 25 W Oct 27	Linear Classifiers	Bishop Ch 4.1-4.3 (34 pages)	Duda 5.1-5.8	
M Nov 1 W Nov 3	Non-Linear Regression & Classification	Bishop Ch 6 (29 pages)	Prince Ch 7.3-7.4	
M Nov 8 W Nov 10	Sparse Kernel Machines	Bishop 7.1 (20 pages)		
M Nov 15 W Nov 17	Graphical Models: Introduction	Bishop Ch 8.1-8.3 (34 pages)		
M Nov 22 W Nov 24	Graphical Models: Inference	Bishop Ch 8.4 (25 pages)		
M Nov 29 W Dec 1	Graphical Models: Applications	Prince Ch 10-11 (56 pages)		
M Dec 6 W Dec 8	Sampling Methods	Bishop Ch 11 (32 pages)		

PROBABILITY AND BAYESIAN INFERENCE

J. Elder

Probability & Bayesian Inference

Some of these slides were sourced and/or modified from:

Christopher Bishop, Microsoft UK

Simon Prince, UCL

INTRODUCTION: VISION AS BAYESIAN INFERENCE

J. Elder

Helmholtz

- Recognized ambiguity of images.
- Knowledge of scene properties and image formation used to resolve ambiguity and infer object properties.
- "Vision as Unconscious Inference"
- Can be formalized as Bayesian Decision Theory.

Hermann von Helmholtz

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Helmholtz' Likelihood Principle

Probability & Bayesian Inference

- Claim 1: The world is uncertain (to the observer)
- □ Claim 2: Vision is ill-posed
- Claim 3: Observers have evolved (are built) to perform valuable tasks well
- Conclusion: Vision is probabilistic inference

Vision is III-Posed

14

Probability & Bayesian Inference

Noise

- "surface noise"
- atmospheric effects
- photon noise
- neural noise
- Dimensionality
 - □ 1D \rightarrow 2D
 - □ 2D \rightarrow 3D
- Composition
 - e.g. Bilinear problem of colour (lightness) constancy:

 $I = L \bullet R$

Vision is III-Posed $2D \rightarrow 3D$ (N:1 Mapping)

Probability & Bayesian Inference

Different Objects

15

Similar Images

From Kersten et al., 2004

Vision is ill-posed (bilinearity of image)

Probability & Bayesian Inference

1:N Mapping

N:1 Mapping

From Kersten et al., 2004

Julian Beever

Probability & Bayesian Inference

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

18

Julian Beever

Probability & Bayesian Inference

Julian Beever

Probability & Bayesian Inference

Liu Bolin

Probability & Bayesian Inference

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Liu Bolin

22

Probability & Bayesian Inference

Liu Bolin

Probability & Bayesian Inference

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Bayes' Rule

Posterior ∞ Likelihood X Prior

24

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Generative Models and Ideal Observers

Probability & Bayesian Inference

From Kersten et al., 2004

25

TOPIC 1. PROBABILITY & BAYESIAN INFERENCE

J. Elder

Random Variables

- □ A random variable is a variable whose value is uncertain.
- For example, the height of a randomly selected person in this class is a random variable I won't know its value until the person is selected.
- Note that we are not completely uncertain about most random variables.
 - For example, we know that height will probably be in the 5'-6' range.
 - In addition, 5'6" is more likely than 5'0" or 6'0".
- The function that describes the probability of each possible value of the random variable is called a probability distribution.

Probability Distributions

Probability & Bayesian Inference

For a discrete distribution, the probabilities over all possible values of the random variable must sum to 1.

28

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Probability Distributions

Probability & Bayesian Inference

- For a discrete distribution, we can talk about the probability of a particular score occurring, e.g., p(Province = Ontario) = 0.36.
- We can also talk about the probability of any one of a subset of scores occurring,
 e.g., p(Province = Ontario or Quebec) = 0.50.
- □ In general, we refer to these occurrences as **events**.

29

Probability Distributions

30

Probability & Bayesian Inference

- For a continuous distribution, the probabilities over all possible values of the random variable must integrate to 1 (i.e., the area under the curve must be 1).
- □ Note that the height of a continuous distribution can exceed 1!

Continuous Distributions

Probability & Bayesian Inference

- For continuous distributions, it **does not** make sense to talk about the probability of an exact score.
 - e.g., what is the probability that your height is exactly 65.485948467... inches?

Normal Approximation to probability distribution for height of Canadian females (parameters from General Social Survey, 1991)

31

Continuous Distributions

Probability & Bayesian Inference

- It does make sense to talk about the probability of observing a score that falls within a certain range
 - e.g., what is the probability that you are between 5'3" and 5'7"?
 - e.g., what is the probability that you are less than 5'10"?

Valid events

Normal Approximation to probability distribution for height of Canadian females (parameters from General Social Survey, 1991)

Probability Densities

Probability & Bayesian Inference

33

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Transformed Densities

Probability & Bayesian Inference

$$p_y(y) = p_x(x) \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right|$$
$$= p_x(g(y)) |g'(y)|$$

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

34

Joint Distributions

Probability & Bayesian Inference

$$p(X = x_i) = \frac{c_i}{N}.$$

Joint Probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Conditional Probability

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

35

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Joint Distributions

Sum Rule $p(X = x_i) = \frac{c_i}{N} = \frac{1}{N} \sum_{j=1}^{L} n_{ij}$ $= \sum_{j=1}^{L} p(X = x_i, Y = y_j)$

Product Rule

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$
$$= p(Y = y_j | X = x_i) p(X = x_i)$$

36

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Probability & Bayesian Inference
Joint Distributions: The Rules of Probability

Probability & Bayesian Inference

37

END OF LECTURE 1 SEPT 13, 2010

J. Elder

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Application Papers

Probability & Bayesian Inference

k	Date	Торіс	Required Readings	Additional Readings	Application Papers
-	M Sept 13 W Sept 15	Probability & Bayesian Inference Probability Distributions & Parametric Modeling	Bishop Ch 1.1-1.2.5 (29 pages) Bishop Ch 2.1-2.3 (skip 2.3.5) (43 pages)	Pearl Ch 1.4-1.6, 2 Howson & Urbach 199 Prince Ch 1-4 Duda Ch 3.1-3.5	
-	M Sept 20 W Sept 22	Probability Distributions & Parametric Modeling (cntd.) Non-Parametric Modeling	Bishop Ch 2.5 (7 pages)	Duda Ch 4.1-4.5	Comaniciu & Meer 2002 (Mean Shift)
-	M Sept 27 W Sept 29	Expectation Maximization	Prince Ch 5 (11 pages) Prince Ch 6.1-6.5, 6.8 (24 pages)	Bishop Ch 9	Stauffer & Grimson 1998 Weber & Perona 2000
-	M Oct 4 W Oct 6	Subspace Models	Prince Ch 6.6-6.7, 6.9 (12 pages) Bishop Ch 12 (40 pages)	Duda Ch 10.13-10.14	Tenenbaum et al 2000 Roweis & Saul 2000
-	M Oct 11 W Oct 13	Reading Week			
	M Oct 18 W Oct 20	Linear Regression	Bishop Ch 3 (36 pages)	Prince Ch 7.1-7.2	Moghaddam 2002 Cremers 2003
	M Oct 25 W Oct 27	Linear Classifiers	Bishop Ch 4.1-4.3 (34 pages)	Duda 5.1-5.8	Belhumeur et al 1997 Martin et al 2004
-	M Nov 1 W Nov 3	Kernel Methods	Bishop Ch 6 (29 pages)	Prince Ch 7.3-7.4	Toyama & Blake 2001 Grochow et al 2004
	M Nov 8 W Nov 10	Sparse Kernel Machines Combining Models	Bishop 7.1 (20 pages) Bishop Ch 14 (20 pages)		Agarwal & Triggs 2006 Zhang et al 2007
	M Nov 15 W Nov 17	Graphical Models: Introduction	Bishop Ch 8.1-8.3 (34 pages)		Freeman et al 2000 Shi & Malik 2000
-	M Nov 22 W Nov 24	Graphical Models: Inference	Bishop Ch 8.4 (25 pages)		Boykov & Funka-Lea 2006 He et al 2004
	M Nov 29 W Dec 1	Graphical Models: Applications	Prince Ch 10-11 (56 pages)		Frey & Jojic 2005 Szeliski et al 2008
	M Dec 6 W Dec 8	Sampling Methods	Bishop Ch 11 (32 pages)		Zhu 1999 Yuille & Kersten 2006

Marginalization

40

Probability & Bayesian Inference

We can recover probability distribution of any variable in a joint distribution by integrating (or summing) over the other variables

Conditional Probability

Probability & Bayesian Inference

- Conditional probability of X given that Y=y* is relative propensity of variable X to take different outcomes given that Y is fixed to be equal to y*
- □ Written as $Pr(X | Y=y^*)$

Conditional Probability

42

Probability & Bayesian Inference

- Conditional probability can be extracted from joint probability
- Extract appropriate slice and normalize

$$Pr(X|Y = y^*) = \frac{Pr(X, Y = y^*)}{\int (Pr(X, Y = y^*)dX)} = \frac{Pr(X, Y = y^*)}{Pr(Y = y^*)}$$

Conditional Probability

Probability & Bayesian Inference

$$Pr(X|Y = y^*) = \frac{Pr(X, Y = y^*)}{\int (Pr(X, Y = y^*)dX} = \frac{Pr(X, Y = y^*)}{Pr(Y = y^*)}$$

More usually written in compact form

$$Pr(X|Y) = \frac{Pr(X,Y)}{Pr(Y)}$$

• Can be re-arranged to give

$$Pr(X,Y) = Pr(X|Y)Pr(Y)$$

$$Pr(X,Y) = Pr(Y|X)Pr(X)$$

Independence

Probability & Bayesian Inference

 If two variables X and Y are independent then variable X tells us nothing about variable Y (and vice-versa)

$$Pr(X|Y) = Pr(X)$$
$$Pr(Y|X) = Pr(Y)$$

YORK UNIVERSITÉ UNIVERSITY

44

Independence

Probability & Bayesian Inference

When variables are independent, the joint factorizes into a product of the marginals:

$$Pr(X,Y) = Pr(X|Y)Pr(Y)$$
$$= Pr(X)Pr(Y)$$

J. Elder

Bayes' Rule

Probability & Bayesian Inference

From before:

$$Pr(X,Y) = Pr(X|Y)Pr(Y)$$
$$Pr(X,Y) = Pr(Y|X)Pr(X)$$

Combining:

$$Pr(Y|X)Pr(X) = Pr(X|Y)Pr(Y)$$

Re-arranging:

$$Pr(Y|X) = \frac{Pr(X|Y)Pr(Y)}{Pr(X)}$$
$$= \frac{Pr(X|Y)Pr(Y)}{\int Pr(X,Y)dY}$$
$$= \frac{Pr(X|Y)Pr(Y)}{\int Pr(X|Y)Pr(Y)}$$

Bayes' Rule Terminology

Probability & Bayesian Inference

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Expectations

$$\mathbb{E}[f] = \sum_{x} p(x)f(x)$$

$$\mathbb{E}[f] = \int p(x)f(x) \,\mathrm{d}x$$

$$\mathbb{E}_{x}[f|y] = \sum_{x} p(x|y)f(x)$$

Conditional Expectation (discrete)

$$\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

Approximate Expectation (discrete and continuous)

Variances and Covariances

49

Probability & Bayesian Inference

$$\operatorname{var}[f] = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right)^2\right] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2$$

$$\operatorname{cov}[x, y] = \mathbb{E}_{x, y} \left[\{ x - \mathbb{E}[x] \} \{ y - \mathbb{E}[y] \} \right]$$

= $\mathbb{E}_{x, y} [xy] - \mathbb{E}[x] \mathbb{E}[y]$

$$\begin{aligned} \operatorname{cov}[\mathbf{x}, \mathbf{y}] &= & \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\{ \mathbf{x} - \mathbb{E}[\mathbf{x}] \} \{ \mathbf{y}^{\mathrm{T}} - \mathbb{E}[\mathbf{y}^{\mathrm{T}}] \} \right] \\ &= & \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\mathbf{x} \mathbf{y}^{\mathrm{T}}] - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{y}^{\mathrm{T}}] \end{aligned}$$

The Gaussian Distribution

Probability & Bayesian Inference

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

50

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Gaussian Mean and Variance

Probability & Bayesian Inference

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x \, \mathrm{d}x = \mu$$

$$\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) x^2 \,\mathrm{d}x = \mu^2 + \sigma^2$$

$$\operatorname{var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$$

YORK UNIVERSITY CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

The Multivariate Gaussian

Probability & Bayesian Inference

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Gaussian Parameter Estimation

Probability & Bayesian Inference

53

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Maximum (Log) Likelihood

Probability & Bayesian Inference

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{1}{2\sigma^{2}}\sum_{n=1}^{N}(x_{n}-\mu)^{2} - \frac{N}{2}\ln\sigma^{2} - \frac{N}{2}\ln(2\pi)$$

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n \qquad \sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2$$

J. Elder

Maximum likelihood estimates of normal parameters

Probability & Bayesian Inference

$$\mathbb{E}[\mu_{\mathrm{ML}}] = \mu$$

$$\mathbb{E}[\sigma_{\mathrm{ML}}^2] = \left(\frac{N-1}{N}\right)\sigma^2$$

$$\widetilde{\sigma}^2 = \frac{N}{N-1}\sigma_{\mathrm{ML}}^2$$

$$= \frac{1}{N-1}\sum_{n=1}^{N}(x_n - \mu_{\mathrm{ML}})^2$$
(b)

55

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

APPLYING PROBABILITY THEORY TO INFERENCE

J. Elder

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Polynomial Curve Fitting

Probability & Bayesian Inference

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Sum-of-Squares Error Function

Probability & Bayesian Inference

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

1st Order Polynomial

Probability & Bayesian Inference

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

3rd Order Polynomial

Probability & Bayesian Inference

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

9th Order Polynomial

Probability & Bayesian Inference

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Over-fitting

Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Overfitting and Sample Size

Probability & Bayesian Inference

9th Order Polynomial

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Overfitting and Sample Size

Probability & Bayesian Inference

9th Order Polynomial

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

J. Elder

Probability & Bayesian Inference

9th Order Polynomial

66

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Probability & Bayesian Inference

9th Order Polynomial

67

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Probability & Bayesian Inference

9th Order Polynomial

Probabilistic View of Curve Fitting

Probability & Bayesian Inference

Maximum Likelihood

Probability & Bayesian Inference

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n | y(x_n, \mathbf{w}), \beta^{-1}\right)$$

$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\underbrace{\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2}_{\beta E(\mathbf{w})} + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi)$$

Determine \mathbf{w}_{ML} by minimizing sum-of-squares error, $E(\mathbf{w})$.

$$\frac{1}{\beta_{\rm ML}} = \frac{1}{N} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}_{\rm ML}) - t_n\}^2$$

70

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

MAP: A Step towards Bayes

Probability & Bayesian Inference

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$$

$$p(\mathbf{w}|\mathbf{x},\mathbf{t},\alpha,\beta) \propto p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta)p(\mathbf{w}|\alpha)$$

$$\beta \widetilde{E}(\mathbf{w}) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

Determine \mathbf{w}_{MAP} by minimizing regularized sum-of-squares error, $\widetilde{E}(\mathbf{w})$.

Some Key Ideas

- Change of variables and transformed densities
- Derivation of sum and product rules of probability
- Maximum likelihood and bias
- Least-squares as optimal probabilistic modeling

