COURSE INTRODUCTION

COMPUTATIONAL MODELING OF VISUAL PERCEPTION

\square The goal of this course is to provide a framework and computational tools for modeling visual inference, motivated by interesting examples from the recent literature.
\square Models may be realized as algorithms to solve computer vision problems, or may constitute theories of visual processing in biological systems.
\square The foundation of the course is a treatment of visual processing as a problem of statistical estimation and inference, grounded in the ecological statistics of the visual world.

Topics

\square Bayesian decision theory
\square Principal components and factor analysis
\square Graphical Models

- Markov Random Fields
- Conditional Random Fields
- Belief Propagation
\square Clustering
- Mean Shift
- Expectation Maximization
- Spectral Methods (Graph Cuts)
\square Sampling
- Gibbs Sampling
- Markov Chain Monte Carlo
\square Classifiers
- Support Vector Machines
\square Neural Networks

Course Format

\square Each week will consist of two 1.5 hour meetings:
\square Meeting 1. A lecture by the instructor on a specific computational tool or approach
\square Meeting 2. A discussion, led by a specified student, of a selected computational vision paper in which this approach is applied to a specific problem.

Evaluation

\square In addition to student presentations of short computational vision papers, two short MATLAB assignments will be collected and graded. The final project will involve application and possibly extension of a technique studied in the class to a problem chosen by the student.
\square Class Participation 10\%

- Paper Presentation 20\%
- Assignment 1 20\%
- Assignment 2 20\%
\square Final Project 30\%

Main Texts

\square C.M. Bishop Pattern Recognition and Machine Learning. New York: Springer, 2006.
\square S.J.D. Prince Computer Vision Models. Available in draft form at

- http://computervisionmodels.blogspot.com/

Probability \& Bayesian Inference

'k	Date	Topic	Required Readings	Additional Readings	Application Paper
	M Sept 13 W Sept 15	Probability \& Bayesian Inference Probability Distributions \& Parametric Modeling	Bishop Ch 1.1-1.2.5 (29 pages) Bishop Ch 2.1-2.3 (skip 2.3.5) (43 pages)	Pearl Ch 1.4-1.6, 2 Howson \& Urbach 199 Prince Ch 1-4 Duda Ch 3.1-3.5	
	$\begin{aligned} & \text { M Sept } 20 \\ & \text { W Sept } 22 \end{aligned}$	Probability Distributions \& Parametric Modeling (cntd. Non-Parametric Modeling	Bishop Ch 2.5 (7 pages)	Duda Ch 4.1-4.5	Comaniciu \& Meer 2002 (Mean Shift)
	$\begin{aligned} & \text { M Sept } 27 \\ & \text { W Sept } 29 \end{aligned}$	Expectation Maximization	Prince Ch 5 (11 pages) Prince Ch 6.1-6.5, 6.8 (24 pages)	Bishop Ch 9	
	$\begin{aligned} & \text { M Oct } 4 \\ & \text { W Oct } 6 \end{aligned}$	Linear Subspace Models	Prince Ch 6.6-6.7, 6.9 (12 pages) Bishop Ch 12 (40 pages)	Duda Ch 10.13-10.14	
	$\begin{aligned} & \text { M Oct } 11 \\ & \text { W Oct } 13 \end{aligned}$	Reading Week			
	$\begin{aligned} & \text { M Oct } 18 \\ & \text { W Oct } 20 \end{aligned}$	Linear Regression	Bishop Ch 3 (36 pages)	Prince Ch 7.1-7.2	
	$\begin{aligned} & \text { M Oct } 25 \\ & \text { W Oct } 27 \end{aligned}$	Linear Classifiers	Bishop Ch 4.1-4.3 (34 pages)	Duda 5.1-5.8	
	$\begin{aligned} & \text { M Nov } 1 \\ & \text { W Nov } 3 \end{aligned}$	Non-Linear Regression \& Classification	Bishop Ch 6 (29 pages)	Prince Ch 7.3-7.4	
	M Nov 8 W Nov 10	Sparse Kernel Machines	Bishop 7.1 (20 pages)		
	$\begin{array}{\|l} \text { M Nov } 15 \\ \text { W Nov } 17 \end{array}$	Graphical Models: Introduction	Bishop Ch 8.1-8.3 (34 pages)		
	$\begin{aligned} & \text { M Nov } 22 \\ & \text { W Nov } 24 \end{aligned}$	Graphical Models: Inference	Bishop Ch 8.4 (25 pages)		
	$\begin{aligned} & \text { M Nov } 29 \\ & \text { W Dec } 1 \end{aligned}$	Graphical Models: Applications	Prince Ch 10-11 (56 pages)		
	$\begin{aligned} & \text { M Dec } 6 \\ & \text { W Dec } 8 \end{aligned}$	Sampling Methods	Bishop Ch 11 (32 pages)		

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Approximate Schedule

Probability \& Bayesian Inference

k	Date	Topic	Required Readings	Additional Readings	Application Paper
	$\begin{aligned} & \text { M Sept } 13 \\ & \text { W Sept } 15 \end{aligned}$	Probability \& Bayesian Inference Probability Distributions \& Parametric Modeling	Bishop Ch 1.1-1.2.5 (29 pages) Bishop Ch 2.1-2.3 (skip 2.3.5) (43 pages)	Pearl Ch 1.4-1.6, 2 Howson \& Urbach 199 Prince Ch 1-4 Duda Ch 3.1-3.5	
	M Sept 20 W Sept 22	Probability Distributions \& Parametric Modeling (cntd.) Non-Parametric Modeling	Bishop Ch 2.5 (7 pages)	Duda Ch 4.1-4.5	Comaniciu \& Meer 2002 (Mean Shift)
	$\begin{aligned} & \text { M Sept } 27 \\ & \text { W Sept } 29 \end{aligned}$	Expectation Maximization	Prince Ch 5 (11 pages) Prince Ch 6.1-6.5, 6.8 (24 pages)	Bishop Ch 9	
	M Oct 4 W Oct 6	Linear Subspace Models	Prince Ch 6.6-6.7, 6.9 (12 pages) Bishop Ch 12 (40 pages)	Duda Ch 10.13-10.14	
	M Oct 11 W Oct 13	Reading Week			
	M Oct 18 W Oct 20	Linear Regression	Bishop Ch 3 (36 pages)	Prince Ch 7.1-7.2	
	$\begin{aligned} & \text { M Oct } 25 \\ & \text { W Oct } 27 \end{aligned}$	Linear Classifiers	Bishop Ch 4.1-4.3 (34 pages)	Duda 5.1-5.8	
	$\begin{aligned} & \text { M Nov } 1 \\ & \text { W Nov } 3 \end{aligned}$	Non-Linear Regression \& Classification	Bishop Ch 6 (29 pages)	Prince Ch 7.3-7.4	
	$\begin{aligned} & \mathrm{M} \text { Nov } 8 \\ & \mathrm{~W} \text { Nov } 10 \end{aligned}$	Sparse Kernel Machines	Bishop 7.1 (20 pages)		
	$\begin{aligned} & \text { M Nov } 15 \\ & \text { W Nov } 17 \end{aligned}$	Graphical Models: Introduction	Bishop Ch 8.1-8.3 (34 pages)		
	$\begin{aligned} & \text { M Nov } 22 \\ & \text { W Nov } 24 \end{aligned}$	Graphical Models: Inference	Bishop Ch 8.4 (25 pages)		
	$\begin{array}{\|l} \hline \text { M Nov } 29 \\ \text { W Dec } 1 \end{array}$	Graphical Models: Applications	Prince Ch 10-11 (56 pages)		
	M Dec 6 W Dec 8	Sampling Methods	Bishop Ch 11 (32 pages)		

PROBABILITY AND BAYESIAN INFERENCE

Credits

Some of these slides were sourced and/or modified from:
\square Christopher Bishop, Microsoft UK
\square Simon Prince, UCL

INTRODUCTION:

VISION AS BAYESIAN INFERENCE

Helmholtz

\square Recognized ambiguity of images.
\square Knowledge of scene properties and image formation used to resolve ambiguity and infer object properties.
\square "Vision as Unconscious Inference"
\square Can be formalized as Bayesian Decision Theory.

Hermann von Helmholtz

Helmholtz' Likelihood Principle

\square Claim 1: The world is uncertain (to the observer)
Claim 2: Vision is ill-posed
Claim 3: Observers have evolved (are built) to perform valuable tasks well
\square Conclusion: Vision is probabilistic inference

Vision is III-Posed

\square Noise

- "surface noise"
- atmospheric effects
- photon noise
- neural noise
\square Dimensionality
- 1D \rightarrow 2D
- 2D \rightarrow 3D
\square Composition
- e.g. Bilinear problem of colour (lightness) constancy:

$$
I=L \bullet R
$$

Vision is III-Posed 2D \rightarrow 3D ($\mathrm{N}: 1$ Mapping)

Vision is ill-posed (bilinearity of image)

1:N Mapping

N: 1 Mapping

From Kersten et al., 2004

Julian Beever

Julian Beever

$\mathbf{Y O}_{U N} \mathrm{R}^{1} \mathrm{~K}$

UNTVERSTTE \square

Julian Beever

YORK
UNIVERSITE \square

Liu Bolin

CONTVERSITE
CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Liu Bolin

Probability \& Bayesian Inference

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Liu Bolin

Probability \& Bayesian Inference

Bayes' Rule

Posterior $\quad \propto \quad$ Likelihood $\quad \times$ Prior

Generative Models and Ideal Observers

Generative Model: $\quad p(S, I)=p(| | S) p(S)$

From Kersten et al., 2004

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

TOPIC 1. PROBABILITY \& BAYESIAN INFERENCE

Random Variables

\square A random variable is a variable whose value is uncertain.
\square For example, the height of a randomly selected person in this class is a random variable - I won't know its value until the person is selected.
\square Note that we are not completely uncertain about most random variables.

- For example, we know that height will probably be in the 5'-6' range.
- In addition, $5^{\prime} 6^{\prime \prime}$ is more likely than $5^{\prime} 0^{\prime \prime}$ or $6^{\prime} 0^{\prime \prime}$.
\square The function that describes the probability of each possible value of the random variable is called a probability distribution.

Probability Distributions

\square For a discrete distribution, the probabilities over all possible values of the random variable must sum to 1.

Probability Distributions

\square For a discrete distribution, we can talk about the probability of a particular score occurring, e.g., p(Province $=$ Ontario $)=0.36$.
\square We can also talk about the probability of any one of a subset of scores occurring, e.g., p(Province $=$ Ontario or Quebec) $=0.50$.
$\square \quad$ In general, we refer to these occurrences as events.

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Probability Distributions

\square For a continuous distribution, the probabilities over all possible values of the random variable must integrate to 1 (i.e., the area under the curve must be 1).
\square Note that the height of a continuous distribution can exceed 1!

Shaded area $=0.683$

Shaded area $=0.997$

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Continuous Distributions

\square For continuous distributions, it does not make sense to talk about the probability of an exact score.

- e.g., what is the probability that your height is exactly $65.485948467 \ldots$ inches?

Normal Approximation to probability distribution for height of Canadian females
(parameters from General Social Survey, 1991)

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Continuous Distributions

Probability \& Bayesian Inference

- It does make sense to talk about the probability of observing a score that falls within a certain range
- e.g., what is the probability that you are between $5^{\prime} 3^{\prime \prime}$ and $5^{\prime} 7^{\prime \prime}$?
- e.g., what is the probability that you are less than $5^{\prime} 10$ "? $\}$

Normal Approximation to probability distribution for height of Canadian females
(parameters from General Social Survey, 1991)

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Probability Densities

Transformed Densities

Joint Distributions

Marginal Probability

$$
p\left(X=x_{i}\right)=\frac{c_{i}}{N}
$$

Joint Probability

$$
\begin{array}{r}
p\left(X=x_{i}, Y=y_{j}\right)=\frac{n_{i j}}{N} \quad \text { Conditional Probability } \\
p\left(Y=y_{j} \mid X=x_{i}\right)=\frac{n_{i j}}{c_{i}}
\end{array}
$$

Joint Distributions

Sum Rule

$$
\begin{aligned}
& p\left(X=x_{i}\right)=\frac{c_{i}}{N}=\frac{1}{N} \sum_{j=1}^{L} n_{i j} \\
& \quad=\sum_{j=1}^{L} p\left(X=x_{i}, Y=y_{j}\right)
\end{aligned}
$$

Product Rule

$$
\begin{aligned}
p\left(X=x_{i}, Y=y_{j}\right) & =\frac{n_{i j}}{N}=\frac{n_{i j}}{c_{i}} \cdot \frac{c_{i}}{N} \\
& =p\left(Y=y_{j} \mid X=x_{i}\right) p\left(X=x_{i}\right)
\end{aligned}
$$

Joint Distributions: The Rules of Probability

\square Sum Rule

$$
p(X)=\sum_{Y} p(X, Y)
$$

\square Product Rule

$$
p(X, Y)=p(Y \mid X) p(X)
$$

END OF LECTURE 1 SEPT 13, 2010

Application Papers

Probability \& Bayesian Inference

ck Date	Topic	Required Readings	Additional Readings	Application Papers
M Sept 13 W Sept 15	Probability \& Bayesian Inference Probability Distributions \& Parametric Modeling	Bishop Ch 1.1-1.2.5 (29 pages) Bishop Ch 2.1-2.3 (skip 2.3.5) (43 pages)	Pearl Ch 1.4-1.6, 2 Howson \& Urbach 199 Prince Ch 1-4 Duda Ch 3.1-3.5	
M Sept 20 W Sept 22	Probability Distributions \& Parametric Modeling (cntd. Non-Parametric Modeling	Bishop Ch 2.5 (7 pages)	Duda Ch 4.1-4.5	Comaniciu \& Meer 2002 (Mean Shift)
$\begin{array}{\|l} \hline \text { M Sept } 27 \\ \text { W Sept 29 } \end{array}$	Expectation Maximization	Prince Ch 5 (11 pages) Prince Ch 6.1-6.5, 6.8 (24 pages)	Bishop Ch 9	Stauffer \& Grimson 1998 Weber \& Perona 2000
M Oct 4 W Oct 6	Subspace Models	Prince Ch 6.6-6.7, 6.9 (12 pages) Bishop Ch 12 (40 pages)	Duda Ch 10.13-10.14	Tenenbaum et al 2000 Roweis \& Saul 2000
$\begin{aligned} & \text { M Oct } 11 \\ & \text { W Oct } 13 \end{aligned}$	Reading Week			
$\begin{array}{\|l\|} \hline \text { M Oct } 18 \\ \text { W Oct } 20 \end{array}$	Linear Regression	Bishop Ch 3 (36 pages)	Prince Ch 7.1-7.2	$\text { Moghaddam } 2002$ $\text { Cremers } 2003$
$\begin{aligned} & \text { M Oct } 25 \\ & \text { W Oct } 27 \end{aligned}$	Linear Classifiers	Bishop Ch 4.1-4.3 (34 pages)	Duda 5.1-5.8	Belhumeur et al 1997 Martin et al 2004
M Nov 1 W Nov 3	Kernel Methods	Bishop Ch 6 (29 pages)	Prince Ch 7.3-7.4	Toyama \& Blake 2001 Grochow et al 2004
M Nov 8 W Nov 10	Sparse Kernel Machines Combining Models	Bishop 7.1 (20 pages) Bishop Ch 14 (20 pages)		Agarwal \& Triggs 2006 Zhang et al 2007
$\begin{aligned} & \text { M Nov } 15 \\ & \text { W Nov } 17 \end{aligned}$	Graphical Models: Introduction	Bishop Ch 8.1-8.3 (34 pages)		Freeman et al 2000 Shi \& Malik 2000
$\begin{aligned} & \text { M Nov } 22 \\ & \text { W Nov } 24 \end{aligned}$	Graphical Models: Inference	Bishop Ch 8.4 (25 pages)		$\begin{aligned} & \text { Boykov \& Funka-Lea } \\ & 2006 \\ & \text { He et al } 2004 \end{aligned}$
$\begin{aligned} & \text { M Nov } 29 \\ & \text { W Dec } 1 \end{aligned}$	Graphical Models: Applications	Prince Ch 10-11 (56 pages)		Frey \& Jojic 2005 Szeliski et al 2008
M Dec 6 W Dec 8	Sampling Methods	Bishop Ch 11 (32 pages)		$\begin{array}{\|l} \hline \text { Zhu } 1999 \\ \text { Yuille \& Kersten } 2006 \end{array}$

Marginalization

We can recover probability distribution of any variable in a joint distribution by integrating (or summing) over the other variables

$$
\begin{aligned}
\operatorname{Pr}(X) & =\int \operatorname{Pr}(X, Y) d Y \\
\operatorname{Pr}(Y) & =\int \operatorname{Pr}(X, Y) d X
\end{aligned}
$$

$$
\operatorname{Pr}(X, Y)=\sum_{W} \sum_{Z} \operatorname{Pr}(W, X, Y, Z)
$$

a)

b)

c)

Conditional Probability

\square Conditional probability of X given that $Y=y^{*}$ is relative propensity of variable X to take different outcomes given that Y is fixed to be equal to y^{*}

- Written as $\operatorname{Pr}\left(X \mid Y=y^{*}\right)$

Conditional Probability

\square Conditional probability can be extracted from joint probability
\square Extract appropriate slice and normalize

$$
\operatorname{Pr}\left(X \mid Y=y^{*}\right)=\frac{\operatorname{Pr}\left(X, Y=y^{*}\right)}{\int\left(\operatorname{Pr}\left(X, Y=y^{*}\right) d X\right.}=\frac{\operatorname{Pr}\left(X, Y=y^{*}\right)}{\operatorname{Pr}\left(Y=y^{*}\right)}
$$

b)

$$
\operatorname{Pr}(X, Y)
$$

Conditional Probability

$$
\operatorname{Pr}\left(X \mid Y=y^{*}\right)=\frac{\operatorname{Pr}\left(X, Y=y^{*}\right)}{\int\left(\operatorname{Pr}\left(X, Y=y^{*}\right) d X\right.}=\frac{\operatorname{Pr}\left(X, Y=y^{*}\right)}{\operatorname{Pr}\left(Y=y^{*}\right)}
$$

\square More usually written in compact form

$$
\operatorname{Pr}(X \mid Y)=\frac{\operatorname{Pr}(X, Y)}{\operatorname{Pr}(Y)}
$$

- Can be re-arranged to give

$$
\begin{aligned}
& \operatorname{Pr}(X, Y)=\operatorname{Pr}(X \mid Y) \operatorname{Pr}(Y) \\
& \operatorname{Pr}(X, Y)=\operatorname{Pr}(Y \mid X) \operatorname{Pr}(X)
\end{aligned}
$$

Independence

\square If two variables X and Y are independent then variable X tells us nothing about variable Y (and vice-versa)

$$
\begin{aligned}
& \operatorname{Pr}(X \mid Y)=\operatorname{Pr}(X) \\
& \operatorname{Pr}(Y \mid X)=\operatorname{Pr}(Y)
\end{aligned}
$$

Independence

\square When variables are independent, the joint factorizes into a product of the marginals:

$$
\begin{aligned}
\operatorname{Pr}(X, Y) & =\operatorname{Pr}(X \mid Y) \operatorname{Pr}(Y) \\
& =\operatorname{Pr}(X) \operatorname{Pr}(Y)
\end{aligned}
$$

Bayes' Rule

From before:

$$
\begin{aligned}
& \operatorname{Pr}(X, Y)=\operatorname{Pr}(X \mid Y) \operatorname{Pr}(Y) \\
& \operatorname{Pr}(X, Y)=\operatorname{Pr}(Y \mid X) \operatorname{Pr}(X)
\end{aligned}
$$

Combining:

$$
\operatorname{Pr}(Y \mid X) \operatorname{Pr}(X)=\operatorname{Pr}(X \mid Y) \operatorname{Pr}(Y)
$$

Re-arranging:

$$
\begin{aligned}
\operatorname{Pr}(Y \mid X) & =\frac{\operatorname{Pr}(X \mid Y) \operatorname{Pr}(Y)}{\operatorname{Pr}(X)} \\
& =\frac{\operatorname{Pr}(X \mid Y) \operatorname{Pr}(Y)}{\int \operatorname{Pr}(X, Y) d Y} \\
& =\frac{\operatorname{Pr}(X \mid Y) \operatorname{Pr}(Y)}{\int \operatorname{Pr}(X \mid Y) \operatorname{Pr}(Y) d Y}
\end{aligned}
$$

Bayes' Rule Terminology

Likelihood - propensity for observing a certain value of X given a certain value of Y

$$
\operatorname{Pr}(Y \mid X)=
$$

Posterior - what we know about y after seeing x

Prior - what we know about y before seeing x \downarrow $\frac{\operatorname{Pr}(X \mid Y) \operatorname{Pr}(Y)}{\operatorname{Pr}(X)}$

Evidence -a constant to ensure that the left hand side is a valid distribution

Expectations

$$
\begin{array}{ll}
\mathbb{E}[f]=\sum_{x} p(x) f(x) & \mathbb{E}[f]=\int p(x) f(x) \mathrm{d} x \\
\mathbb{E}_{x}[f \mid y]=\sum_{x} p(x \mid y) f(x) & \begin{array}{l}
\text { Conditional Expectation } \\
\text { (discrete) }
\end{array} \\
\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right) & \begin{array}{l}
\text { Approximate Expectation } \\
\text { (discrete and continuous) }
\end{array}
\end{array}
$$

Variances and Covariances

$$
\begin{aligned}
& \operatorname{var}[f]=\mathbb{E}\left[(f(x)-\mathbb{E}[f(x)])^{2}\right]=\mathbb{E}\left[f(x)^{2}\right]-\mathbb{E}[f(x)]^{2} \\
& \\
& =\mathbb{E}_{x, y}[x y]-\mathbb{E}[x] \mathbb{E}[y] \\
& \operatorname{cov}[x, y]=\mathbb{E}_{x, y}[\{x-\mathbb{E}[x]\}\{y-\mathbb{E}[y]\}] \\
& \\
& \begin{aligned}
\operatorname{cov}[\mathbf{x}, \mathbf{y}] & =\mathbb{E}_{\mathbf{x}, \mathbf{y}}\left[\{\mathbf{x}-\mathbb{E}[\mathbf{x}]\}\left\{\mathbf{y}^{\mathrm{T}}-\mathbb{E}\left[\mathbf{y}^{\mathrm{T}}\right]\right\}\right] \\
& =\mathbb{E}_{\mathbf{x}, \mathbf{y}}\left[\mathbf{x} \mathbf{y}^{\mathrm{T}}\right]-\mathbb{E}[\mathbf{x}] \mathbb{E}\left[\mathbf{y}^{\mathrm{T}}\right]
\end{aligned}
\end{aligned}
$$

The Gaussian Distribution

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}
$$

Gaussian Mean and Variance

$$
\begin{aligned}
\mathbb{E}[x] & =\int_{-\infty}^{\infty} \mathcal{N}\left(x \mid \mu, \sigma^{2}\right) x \mathrm{~d} x=\mu \\
\mathbb{E}\left[x^{2}\right] & =\int_{-\infty}^{\infty} \mathcal{N}\left(x \mid \mu, \sigma^{2}\right) x^{2} \mathrm{~d} x=\mu^{2}+\sigma^{2} \\
\operatorname{var}[x] & =\mathbb{E}\left[x^{2}\right]-\mathbb{E}[x]^{2}=\sigma^{2}
\end{aligned}
$$

The Multivariate Gaussian

$$
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

Gaussian Parameter Estimation

Maximum (Log) Likelihood

$$
\begin{gathered}
\ln p\left(\mathbf{x} \mid \mu, \sigma^{2}\right)=-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}-\frac{N}{2} \ln \sigma^{2}-\frac{N}{2} \ln (2 \pi) \\
\mu_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \quad \sigma_{\mathrm{ML}}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\mu_{\mathrm{ML}}\right)^{2}
\end{gathered}
$$

Maximum likelihood estimates of normal parameters

$$
\begin{aligned}
& \mathbb{E}\left[\mu_{\mathrm{ML}}\right]=\mu \\
& \mathbb{E}\left[\sigma_{\mathrm{ML}}^{2}\right]=\left(\frac{N-1}{N}\right) \sigma^{2} \\
& \widetilde{\sigma}^{2}=\frac{N}{N-1} \sigma_{\mathrm{ML}}^{2} \\
& \quad=\frac{1}{N-1} \sum_{n=1}^{N}\left(x_{n}-\mu_{\mathrm{ML}}\right)^{2}
\end{aligned}
$$

APPLYING PROBABILITY THEORY TO INFERENCE

Polynomial Curve Fitting

Sum-of-Squares Error Function

$1^{\text {st }}$ Order Polynomial

$3^{\text {rd }}$ Order Polynomial

$9^{\text {th }}$ Order Polynomial

Over-fitting

Root-Mean-Square (RMS) Error: $E_{\text {RMS }}=\sqrt{2 E\left(\mathrm{w}^{\star}\right) / N}$

Overfitting and Sample Size

$9^{\text {th }}$ Order Polynomial

Overfitting and Sample Size

9th Order Polynomial

Regularization

\square Penalize large coefficient values

$$
\widetilde{E}(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|^{2}
$$

Regularization

$9^{\text {th }}$ Order Polynomial

Regularization

9th Order Polynomial

Regularization

$9^{\text {th }}$ Order Polynomial

Probabilistic View of Curve Fitting

Maximum Likelihood

$$
\begin{gathered}
p(\mathbf{t} \mid \mathbf{x}, \mathbf{w}, \beta)=\prod_{n=1}^{N} \mathcal{N}\left(t_{n} \mid y\left(x_{n}, \mathbf{w}\right), \beta^{-1}\right) \\
\ln p(\mathbf{t} \mid \mathbf{x}, \mathbf{w}, \beta)=-\underbrace{\frac{\beta}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}}_{\beta E(\mathbf{w})}+\frac{N}{2} \ln \beta-\frac{N}{2} \ln (2 \pi)
\end{gathered}
$$

Determine \mathbf{w}_{ML} by minimizing sum-of-squares error, $E(\mathbf{w})$.

$$
\frac{1}{\beta_{\mathrm{ML}}}=\frac{1}{N} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}_{\mathrm{ML}}\right)-t_{n}\right\}^{2}
$$

MAP: A Step towards Bayes

$$
\begin{gathered}
p(\mathbf{w} \mid \alpha)=\mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1} \mathbf{I}\right)=\left(\frac{\alpha}{2 \pi}\right)^{(M+1) / 2} \exp \left\{-\frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}\right\} \\
p(\mathbf{w} \mid \mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t} \mid \mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w} \mid \alpha) \\
\beta \widetilde{E}(\mathbf{w})=\frac{\beta}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}+\frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}
\end{gathered}
$$

Determine $\mathbf{w}_{\text {MAP }}$ by minimizing regularized sum-of-squares error, $\widetilde{E}(\mathbf{w})$.

Some Key Ideas

\square Change of variables and transformed densities
\square Derivation of sum and product rules of probability
\square Maximum likelihood and bias
\square Least-squares as optimal probabilistic modeling

